Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Kīlauea Volcano on Hawai'i Island is host to a complex volcanic and interwoven fault system. Over the last ∼120 years, a range of seismic events, including large earthquakes such as the 1975 7.7 Kalapana earthquake, creep, and slow slip events, have occurred along the décollement underlying Kilauea's south flank. We explore both the deformation and stress changes of Kīlauea from 1896 to 2018 by collating six geodetic data sets and creating an analytical model to determine the dominant deformation sources (i.e., fault planes, rifts, magma chambers) driving this system at different times. The 1975 Kalapana earthquake significantly altered the region's state of stress and deformation; we find the average slip along the décollement was reduced from 10 cm/yr prior, to 4 cm/yr after the rupture. Prior to 1975 no slip is resolved along the décollement where the earthquake nucleated, suggesting that this portion may have been locked leading up to the rupture. After 1975, décollement slip overall is smaller and more irregular, suggesting increased control by spatial variation of mechanical properties. We find increases in shear stress along the Kīlauea décollement and a decrease in normal compressive stress within the East Rift Zone prior to the Kalapana earthquake, creating favorable conditions for failure of the décollement and subsequent magmatic intrusion.more » « less
-
Abstract Interferometric Synthetic Aperture Radar is an important tool for imaging surface deformation from large continental earthquakes. Here, we present maps of coseismic displacement and strain from the 2019 Ridgecrest earthquakes using multiple Sentinel-1 images. We provide three types of interferometric products. (1) Standard interferograms from two look directions provide an overview of the deformation and can be used for modeling coseismic slip. (2) Phase gradient maps from stacks of coseismic interferograms provide high-resolution (∼30 m) images of strain concentration and surface fracturing that can be used to guide field surveys. (3) High-pass filtered, stacked, unwrapped phase is decomposed into east–west and up–down, south–north components and is used to determine the sense of fault slip. The resulting phase gradient maps reveal over 300 surface fractures, including triggered slip on the Garlock fault. The east–west component of high-pass filtered phase reveals the polarity of the strike-slip offset (right lateral or left lateral) for many of the fractures. We find a small number of fractures that have slip polarity that is retrograde to the background tectonic stress. This is similar to observations of retrograde slip observed near the 1999 Mw 7.1 Hector Mine rupture, but the Ridgecrest observations are more completely imaged by the frequent and high-quality acquisitions from the twin Sentinel-1 spacecrafts. Determining whether the retrograde features are triggered slip on existing faults, or compliant fault deformation in response to stress changes from the Ridgecrest earthquakes, or new Coulomb-style failures, will require additional field work, modeling, and analysis.more » « less
-
Contemporary earthquake hazard models hinge on an understanding of how strain is distributed in the crust and the ability to precisely detect millimeter-scale deformation over broad regions of active faulting. Satellite radar observations revealed hundreds of previously unmapped linear strain concentrations (or fractures) surrounding the 2019 Ridgecrest earthquake sequence. We documented and analyzed displacements and widths of 169 of these fractures. Although most fractures are displaced in the direction of the prevailing tectonic stress (prograde), a large number of them are displaced in the opposite (retrograde) direction. We developed a model to explain the existence and behavior of these displacements. A major implication is that much of the prograde tectonic strain is accommodated by frictional slip on many preexisting faults.more » « less
An official website of the United States government
